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Frictional forces in an electrolytic environment

L. I. Daikhin and M. Urbakh*
School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

~Received 6 July 1998!

We propose a theoretical description of frictional phenomena in nanoscale layers of electrolyte solutions
embedded between two plates, one of which is externally driven. It is shown that the presence of nonuniform
charge distributions on the plates leads to a space-dependent frictional force, which enters into the equation of
motion for the top driven plate. The equation displays a rich spectrum of dynamical behaviors: periodic
stick-slip, erratic, and intermittent motions, characterized by force fluctuations, and sliding above the critical
velocity. Boundary lines separating different regimes of motion in a dynamical phase diagram are determined.
The dependences of the frictional force and regimes of motion on an electrolyte concentration, a surface charge
distribution, and a thickness of the liquid layer are predicted. The relevance to existing systems and predictions
amenable to different experiments are discussed.@S1063-651X~99!01202-7#

PACS number~s!: 68.45.2v, 68.15.1e, 47.27.Lx, 46.80.1j
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I. INTRODUCTION

Much attention has been recently developed within
field of nanotribology in the understanding of the nature
friction at a microscopic scale@1–4#. Sheared liquids con
fined between two atomically smooth solid surfaces prov
a good example of a system where a broad range of phen
ena and different behaviors have been experimentally
served @5–8#. These include dry frictionlike behavior ob
served for atomically thin liquid layers at low drivin
velocity, a transition to a liquidlike sliding with the increas
of layer thickness and/or driving velocity, and shear th
ning. These and other observations have motivated theo
cal efforts, both numerical@9–15# and analytical@16–21#,
but many aspects of friction are still not well understood.

To get insights that will help establish the basics of na
otribology it is necessary to perform measurements un
well defined conditions and to have a possibility to chan
interactions in a controlled way. An electrochemical enviro
ment can provide such conditions for nanotribological st
ies. Electrode surfaces immersed in electrolyte have well
fined properties. Dissolution of surface groups leads
charging of these surfaces, resulting in electrostatic inte
tions between surfaces. All electrostatic interactions
known and well described@22#. There are many ways to
change interactions in electrochemical systems with
changing any other properties of the measurement, for
stance, by varying the electrolyte concentration and com
sition. Moreover, for conducting surfaces the surface pot
tial can be changed during measurements, which allows
to distinguish between different contributions to friction
forces. Friction measurements performed in an electrol
environment@23–25# have already demonstrated interesti
dependences of frictional dynamics on the electrolyte c
centration and on liquid film thickness.

In this paper we propose a theoretical description of fr
tional phenomena in a thin layer of electrolyte solution co
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fined between two plates. The dependences of the frictio
force and regimes of motion on the electrolyte concentrati
the surface charge distribution, and the thickness of the
uid layer are studied. The proposed model leads to the
served experimental behavior and to predictions that
amenable to experimental tests. Up to now the majority
surface force apparatus~SFA! measurements have been pe
formed with atomically flat mica surfaces@5–8# and there-
fore we do not consider here the effect of roughness on f
tional forces. The presence of surface roughness may lea
mechanisms of friction@26,27# that are different from those
discussed above.

The paper is organized as follows. In Sec. II we define
model and calculate frictional forces between two plates. T
Poisson-Boltzmann approach is used for the calculation
electrostatic interactions. In Sec. III we introduce the eq
tion of motion. Different dynamical regimes are discuss
and transition between them are analyzed. Section IV s
marizes our results. The Appendix presents a stability an
sis of the regimes of motion.

II. ELECTROSTATIC INTERACTIONS

We consider two plates separated by a thin layer of
electrolyte solution. The top plate of massM is pulled by a
linear spring with a force constantK connected to a stag
that moves with a velocityV ~see Fig. 1!. When the plate
surfaces are in contact with an electrolyte they beco
charged. This leads to electrostatic interactions betw
plates. The charging of surfaces in a liquid can come in t
ways@22#: by the ionization or dissociation of surface grou

ic
FIG. 1. Schematic sketch of a model geometry.
1921 ©1999 The American Physical Society
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or/and by the adsorption of ions from the solution. T
charge on the solid surfaces is obviously not uniformly d
tributed over the surfaces. The discreteness of the sur
charges is a natural source of this nonuniformity. The surf
roughness may serve as an additional source of the ch
nonuniformity. It should be noted that the surface cha
distribution depends on the conductivity of the plates.

The motion of the nonuniformly charged top plate giv
rise to a reorganization of the ionic distribution in the ele
trolyte solution, which results in a resistance force acting
the top plate. The relaxation time of the ionic systemtD

could be estimated astD
215k2D @28#, wherek21 is the De-

bye length andD is the diffusion coefficient of the ions in th
solution. For a 1-1 binary electrolyte solutionk21

5(eelkBT/8pne2)1/2, wheren is the electrolyte concentra
tion, eel the dielectric constant of the solvent,e the charge of
electron,T the temperature, andkB the Boltzmann constant
In 0.1M – 0.001M aqueous solutionstD

21 is typically
107– 109 s21. The characteristic time related to the motion
the nonuniform surface charge could be estimated astm

21

5Vmax/l, wherel is the average distance between charges
the plate surfaces andVmax is the maximal velocity of the top
plate. The charges on real surfaces are typically 1–10
apart from each other on average@22# and Vmax does not
exceed 102v ~see below!, where the velocity of the stagev is
typically 1022– 1 mm/s. As a result,tm

21 falls in the range
102– 105 s21. Our estimations demonstrate that the relaxat
of the ionic atmosphere is much faster than the motion
surface charges. In this case the ionic system is in equ
rium at all times and the lateral, frictional, force acting on t
top plateP is determined by the variation of the free ener
of the ionic systemF,

P52
]F
]X

, ~1!

where X is the lateral displacement of the top plate w
respect to the bottom one and the axisx is chosen to coincide
with the direction of motion.

If the ions in the solution are treated as a dilute, ideal g
the free energy of the electrolyte plasma can be written
@29#

F5kTE d3r$n1~r !@ ln n1~r !/n21#

1n2~r !@ ln n2~r !/n21#12n%

1
eel

8p E d3r “f~r !“f~r !. ~2!

Heref~r ! is the electrostatic potential in the electrolyte a
n1(r ) and n2(r ) are the concentrations of positive an
negative ions, which are related to the potential by the eq
tions

n6~r !5n exp@7ef~r !/kBT#. ~3!

In order to calculate the forceP, one needs the distribu
tion of the electrostatic potentialf~r ! in the electrolyte. The
latter is described by the solution of the Poisson-Boltzma
-
ce
e

rge
e

-
n

f

n

m

n
f

b-

s,
s

a-

n

equation@22,29#. As a first step we restrict our consideratio
by its linearized version, valid for low potentialsf
,kBT/e:

~¹22k2!f~r !50. ~4!

The solution of Eq.~4! must satisfy the boundary cond
tions relating the normal component of electrostatic displa
ment to the surface charge densities at the plates. We
scribe the surface charge densities at the bottom and the
plates by the functionss0(R) and sd(R1X), respectively.
The planesz50 andd are chosen to coincide with the pla
surfaces andR5(x,y) denotes a tangential coordinate. Th
the boundary conditions can be written as

eel

]f~z501,R!

]z
2 esub

]f~z502,R!

]z
54ps0~R!,

~5!

esub

]f~z5d1,R!

]z
2 eel

]f~z5d2,R!

]z
54psd~R1X!,

whereesub is the dielectric constant of the plates. A simil
model, with uniform surface charge densities, has been u
to study a normal pressure between two charged surface
an electrolyte solution@22,29#.

Here we focus on the effect of lateral nonuniformity
the surface charge density, which plays an essential rol
frictional phenomena. We assume that surface charge di
butionss0(R) andsd(R1X) are frozen and do not depen
of the relative displacement of the plates. The influence
fluctuations of surface charges on the interactions betw
plates has been considered in Ref.@30#.

In solving Eq.~4! it is convenient to Fourier transform th
potential and the charge densities from the tangential co
dinatesR to the corresponding wave vectorsK5(Kx ,Ky) so
that f (K )5*dR f (R)exp(2iK•R). Equation~1! then trans-
forms to

H d2

dz2
2K22k2J f~K,z!50. ~6!

The solution of Eq.~6! in the layer 0,z,d has the form

f~z,K !5A~K !exp~2qKz!1B~K !exp~qKz!, ~7!

where qK5Ak21K2. The boundary conditions in Eq.~5!
lead to the equations for the prefactorsA(K ) andB(K ),

A~K !5
2p

D~K !
$s0~K !~eelqK1esubK !exp~qKd!

1sd~K !~eelqK2esubK !exp~ iK xX!%,
~8!

B~K !5
2p

D~K !
$s0~K !~eelqK2esubK !exp~2qKd!

1sd~K !~eelqK1esubK !exp~ iK xX!%,

where

D~K !5~eel
2qK

2 1esub
2 K2!sinh~qKd!12eelesubqkK cosh~qKd!.

~9!
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Then the distribution of the electrostatic potential in the
lution has the form

f~R,z!5E d2K

~2p!2

4p exp~ iK•R!

D~K !

3$s0~K !@eelqK coshqK~z2d!

2esubK sinhqK~z2d!#1sd~K !exp~ iK xX!

3@eelqK coshqKz1esubK sinhqKz#%. ~10!

In the range of low potentials one may expand ion co
centrationsn6(r ) in ef/kBT. Then considering terms up t
the second order inef/kBT, Eq. ~2! for the free energy
reduces to

F5 1
2 E

z50
d2R f~R!s0~R!1 1

2 E
z5d

d2R f~R!sd~R1X!

52pE d2K

~2p!2

1

D~K !
$@ us0~K !u21usd~K !u2#

3@eelqK coshqKd1esubK sinhqKd#

12sd~K !s0~2K !eelqK exp~ iK xX!%. ~11!

Substitution of Eq.~11! into Eq. ~1! gives the final equation
for the lateral force acting on the moving top plate

P54p i E d2K

~2p!2

eelqKKxsd~K !s0~2K !exp~ iK xX!

D~K !
.

~12!

Equation~12! correlates the lateral force with the char
distributions on the plates. As an example, we assume p
odically varying charge density distributions along the pl
surfaces

s0~R!5sd~R!5s̄1Ds sin
2p

l
x. ~13!

This leads to the expression for the space-dependent la
force

P5b sinS 2p

l
XD , ~14!

where

b5
4p2~Ds!2SeelAk21~2p/ l !2

lD ~K52p/ l !
~15!

andS is the area of the plate surfaces. Equation~15! can be
simplified by taking into consideration thateel@esub,

b5
4p2S~Ds!2

eellAk21~2p/ l !2 sinh@dAk21~2p/ l !2#
. ~16!

Equations~14!–~16! present the dependence of the friction
force on the distance between platesd, the electrolyte con-
centrationn, and periodicity of the surface charge distrib
-

-

ri-
e

ral

l

tions l. The amplitude of the frictional force decreases exp
nentially with the distance between plates. In the range
high electrolyte concentrationsk>2p/ l , we predict a sharp
decrease inb as n increases. For lower concentrationsk
,2p/ l , the amplitudeb depends only slightly onn.

Equation ~12! applies also to a case of random char
distributions on the plates. It has been recently shown@31#
that the presence of random charge distributions leads
large number of minima in the energy of interaction betwe
plates as a function of their relative parallel displaceme
The typical energy associated with these minima scales
the square root of the plate areaS1/2 and for sufficiently large
plates can be much larger than the thermal energykBT. The
presence of such minima may lead to stick-slip phenom
for low driving velocities. Most dynamical behaviors foun
in the next section~stick-slip motion, transition to sliding
and so on! hold also for a random charge distribution.

III. DYNAMICS OF FRICTION

The motion of the top driven plate, which is the bas
observable in SFA experiments, is determined by the in
play between the electrostatic lateral force, a viscous fricti
and the external spring force. Taking into consideration
separation of time scales, which correspond to the top p
motion and to the ionic subsystem relaxation, the dynam
equation for the plate can be written in the form

MẌ1GẊ1K~X2Vt!2b sin~2pX/ l !50. ~17!

The dissipative forceGẊ in Eq. ~17! describes the viscou
friction at the top plate-solution interfaceG5heffS/d, where
heff is the effective viscosity in the confined liquid layer. Th
effective viscosity of the thin layer may differ essential
from the bulk viscosity of the solution@6#.

The important outcome of our electrostatic considerat
is that the effective frictional force F fr52GẊ
1b sin(2pX/l) in the equation of motion for the macroscop
mechanical degrees of freedom@Eq. ~17!# has to be space
dependent as obtained in Eq.~14!. The space dependence
the friction force reflects properties of the microscopic int
actions at the surfaces, namely, the nonuniformity of the s
face charge distribution at the plate surfaces taken her
periodic. The typical lateral length scale of the electrosta
interactionl reappears in the macroscopic friction force. T
independence of the lateral forceP of the velocity is a con-
sequence of the fact that the relaxation time of the embed
systemtD is faster than the characteristic time related to
motion of the top platetm . Similar equations with space
dependent frictional forces emerge also in other systems
instance, in the case of dry friction@20~b!,32#.

It is convenient to introduce dimensionless space a
time coordinates y52pX/ l and t5tv, where v
5(2p/ l )1/2Ab/M is the frequency of the small oscillation
of the top plate in the minima of the periodic potenti
( l /2p)b cos(2p/lX). Equation~17! can be rewritten then in a
dimensionless form as

ÿ1g ẏ2sin~y!1a~y2vt!50. ~18!
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1924 PRE 59L. I. DAIKHIN AND M. URBAKH
The dynamical behavior of the model is determined
the following dimensionless parameters:g5G/Mv is a di-
mensionless dissipation constant,a5(V/v)2 is the square
of the ratio of the frequency of the free oscillations of the t
plateV5AK/M to v, andv52pV/v l is the dimensionless
stage velocity. The model leads to a number of differ
regimes of the motion of the top driven plate, which is t
experimental observable. Below we discuss the depend
of the plate motion on the parameters of the system.

A. Low-velocity regime

The main objective of the SFA experiments is to dedu
information on microscopic properties of the system fro
the observed dynamics of the top plate. For this purpose
needs to understand the dependence of the dynamics o
mechanical~external! parameters and the parameters of
embedded system~internal!. First we investigate the motion
of the plate for very small velocities of the stagev!1. In this
case, the motion can involve two steps: slow motion~creep!
in a local minima of the total potentialU(X,t) ~see Fig. 2!

U~X,t !5
l

2p
b cosS 2p

l
XD1

K

2
~X2Vt!2 ~19!

and a fast slip~sliding! that begins when an instability oc
curs, i.e.,d2U/dX2 changes sign. The latter is possible f
a,1 only. At the point of instability the spring force reach
a maximum value corresponding to the static friction for
Fs . The static friction equals the maximum value of t
lateral force acting on the top plate, the amplitudeb in Eq.
~14!,

Fs5b. ~20!

During a sliding the spring forceF5K(X2Vt) decreases
until it reaches a valueFk where the sliding ceases and th
top plate is trapped again at a potential minima. Thus a
riodic stick-slip motion of the top plate is observed forv
!1 anda,1 @see Figs. 3~a!–3~c!#. This type of motion has
been recently observed in the experiments performed in e
trolyte solutions @25#. For a.1 no instabilities occur,
d2U/dX2Þ0, and at all times the plate follows adiabatica

FIG. 2. Dimensionless total potential 2pU(X,t)/bl versus the
dimensionless plate coordinate 2pX/ l drawn for a50.03 andvt
540. Arrows indicate a slip motion~a jump! of the plate for three
different dynamical regimesa–c discussed in the text.
y
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the motion of the stage being in a minima of the total pote
tial. Here we concentrate on the dynamics of the system
the most interesting case ofa,1, when the electrostatic in
teraction between plates is stronger than the external sp
force.

The dynamics of the stick-slip motion could be analyz
taking into account that the stage is effectively at rest dur
the fast slip of the plateVt5L05const. The time pattern o
the stick-slip motion is determined by the relationship b
tween parametersa and g. Three regimes can be distin
guished @20~b!#: ~a! g2/4@1, where the system is over
damped@Fig. 3~a!#; ~b! a,g2/4,1, where the system is
underdamped with respect to the periodic potential and o

FIG. 3. Time series of the spring forceF for three regimes of the
plate motion: ~a! g55,a50.02, and v50.02; ~b! g50.5,a
50.02, andv50.02; and~c! g50.03,a50.05, andv50.02. The
spring force is presented in units of static frictional forceb.
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PRE 59 1925FRICTIONAL FORCES IN AN ELECTROLYTIC ENVIRONMENT
damped with respect to the driving spring@Fig. 3~b!#; and~c!
g2/4!a!1, where the system is underdamped@Fig. 3~c!#.

(a) g2/4@1. In this regime the ‘‘slip’’ motion of the top
plate corresponds to the jump between nearest-neig
minima of the potentialU(X,t5L0 /V) and the slip distance
D is aboutl, the period of the lateral forceP.

The energy dissipated during the slip is

DW5U~X0 ,L0!2U~X1 ,L0!. ~21!

HereX0 andL0 are the position of the plate and the length
the spring at the saddle point given bydU/dX50 and
d2U/dX250, where the slip starts, andX1 is the next larger
value ofX that satisfiesdU/dX50. The coordinatesX0 and
L0 are shown to be

X05 l S 12
1

2p
arccos~a! D , ~22!

L05X01
l

2pa
~12a2/2!. ~23!

For low driving velocities the average friction force, which
defined as the dissipated energy per unit length, i.e.,F
5DW/D, can be calculated analytically for two limitin
cases@32#

F59b~12a!2/p1O„~12a!3
… for 0,12a!1, ~24!

F5b1O~a! for a!1. ~25!

The finite value of the frictional force found here forv→0 is
a result of instabilities of the potentialU(X,t). Similar ef-
fects have been also found in other microscopic models
friction @12,20,32# and in large-scale molecular dynami
simulations@14#.

Important information on the nature of stick-slip motio
and on a transition to sliding could be obtained from a ph
portrait (z5y2vt1gv/a vs ż5 ẏ2v), which characterizes
the oscillatory motion of the system. The phase space re
sentation is closely related to the dependence of the sp
force a(vt2y) on the top plate velocityẏ, which has been
studied experimentally@33#. Figure 4 shows a representativ
phase portrait of the overdamped regime:a50.2,g54, and

FIG. 4. Phase space representation of the plate motion in
overdamped regime forg54,a50.2, andv50.02. z and ż are
presented in dimensionless units.
or

f

of

e

e-
ng

v50.02. The interval@a,b# corresponds to a very slow mo
tion ~creep! of the top plate located in the minima of th
potentialU(X,t). The top plate starts to slide at the sadd
point b where the instability occurs, approaches the maxim
velocity at the pointc, and comes to rest ata.

We have also calculated an instantaneous frictional fo

F fr52GẊ1b sin(2pX/l) as a function of plate velocity~see
Fig. 5!. This quantity could be derived from the SFA expe
mental data@33,34# providing additional information on the
frictional dynamics. During the creep period,F fr increases
linearly in time from a to b. When F fr reaches the static
friction the top plate starts to slide. During the accelerat
~bc! F fr decreases monotonically fromFs as the velocity
increases. During the deceleration~ca! F fr continues to de-
crease. Our calculations show that the frictional force is no
single-valued function of the velocity. A similar effect ha
been observed in a recent measurement of friction in gra
lar materials@33#. The difference between Figs. 4 and 5
caused by the contribution of the acceleration of the pl
and becomes more pronounced forg,1. A detailed analysis
of a transition from stick-slip motion to sliding within th
overdamped regime has been performed in Refs.@20~b!, 32#.

(b) a,g2/4,1. In this regime the system manifests
qualitatively different dynamical behavior. Figure 6 prese
phase portraits calculated for different values of the dim
sionless spring constanta. The following important features
of the top plate motion should be noted.~i! The slip distance
increases with the decrease ofa and could be much large
than the periodl. The number of maxima ofż as a function
of z, seen from the phase portrait, corresponds to a numbe
periods covered by the plate during the slip.~ii ! After slid-
ing, the plate oscillates while approaching the stable equi
rium position that corresponds to the focus. The equilibriu
position itself moves in the direction of the next jump a
the nature of the singular point (]2U/]X250) changes,
transforming from the focus into the node and then into
saddle point.

In order to understand the dependence of the slip dista
on a and g we have derived an approximate analytical e
pression for the top plate velocityẊ using the energy balanc
equation

he FIG. 5. Dimensionless frictional forceF fr /b versus the dimen-
sionless velocity of the plateẏ. The parameters are the same as
Fig. 4.
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MẊ2

2
2

l

2p
b cosS 2p

l
XD1

K

2
~X2L0!2

5U~X0 ,L0!2GE
X0

X

Ẋ dX. ~26!

Equation~26! has been solved using the expression for
dissipated energy, which was found by the solution of E
~17! in the zeroth order inb. This approximate solution o
Eq. ~26! is in good agreement with the results of numeric
calculations ofẊ(X) according Eq.~17!. The slip distanceD
could be determined as a distance between the poinX
5X0 , where the slip starts, and the next turning point, wh
Ẋ50. As a result, fora!1 we obtain

D'
l

2pa F12&gS 12
g~g!

g D G , ~27!

where

g~g!5Ap2
3

2g
1

exp~2Apg!

2g
@42exp~2Apg!#.

~28!

Equation~27! shows that the slip distance increases prop
tionally to b/Kl . Figure 7 shows the dependences ofD on a
for g50.5.

The energy dissipated during the slipDW can be evalu-
ated in a similar manner as was done in the overdam

FIG. 6. Phase space representation of the plate motion foa
,g2/4,1: ~a! g50.5,a50.02, andv50.02 and~b! g50.5,a
50.04, andv50.02.z and ż are presented in dimensionless unit
e
.

l

e

r-

d

regime. We find that fora!1,DW is proportional to the slip
distance. As a result, the average friction force, which w
defined as the dissipated energy per unit length, should
estimated with the help of Eqs.~24! and ~25! derived above
for D' l .

Low driving velocity measurements help to distingui
between two fundamental quantities: static (Fs) and kinetic
(Fk) friction forces. Fs is the force needed to initiate th
motion andFk is the minimal force necessary to keep t
plate sliding. As we have already mentioned above,Fs is
expressed by the amplitude of the periodic lateral force@Eq.
~20!#. When considering the kinetic friction, the dissipativ
nature of the system enters andFk depends also onG. For
a,g2/4,1 the kinetic friction can be obtained by balancin
the gain in energy due to driving force and the energy l
due to dissipation@35#. This argument leads to

Fk5
4

p
gb. ~29!

In the regimes~a! and ~b! discussed so far, the static an
kinetic friction forces correspond to the maxima and minim
in the spring force observed during stick-slip oscillatio
@see Figs. 3~a! and 3~b!# @5#. Figure 8 demonstrates that re
sults of numerical calculations ofFk follow Eq. ~29!.

Our calculations show that time patterns of the stick-s
motion depend on~i! the parameters of the embedded syst
~thickness of the liquid layerd, concentration of the electro
lyte solution n, and lateral length scalel! and ~ii ! the me-
chanical parameters~mass of the top plateM and spring con-
stant K!. All these parameters are included in th
dimensionless quantitiesa andg. In the case of the electro
lyte solution confined between two plates the parametea
increases exponentially with the distanced between plates
and/or electrolyte concentrationn @see Eqs.~15! and ~16!#.
Thus the increase ofd and/or n, for given K, M, and V,
should lead to a decrease in the sliding distance and
transition from stick-slip motion to smooth sliding. Thes
conclusions are in agreement with the preliminary expe
mental results@25#.

FIG. 7. Slip distanceD versus the dimensionless spring consta
a. Closed circles show the results of numerical calculations and
solid line corresponds to calculations according to Eq.~27!. D is
presented in units of the period of surface charge distributionl. The
dimensionless dissipation constantg50.5 andv50.02.
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(c) g2/4!a!1. In this regime the periodic motion of th
system includes a stick period followed by slowly attenua
oscillations @20~b!#. The top plate starts to slip from th
saddle point, overshoots the lowest well of the total poten
U(X,L0), and bounces a few times across the modula
parabola~see Fig. 2! before it slowly comes to rest into on
of the pinning wells. This behavior is illustrated by the pha
portrait presented in Fig. 9. It should be mentioned that
minimal spring force observed during stick-slip oscillatio
is negative and the amplitude of the oscillations is closed
2Fs .

B. Transition from stick-slip motion to sliding

As the stage velocity increases the stick-slip motion of
top plate becomes more erratic and intermittent and t
changes to periodically modulated sliding state. Figure
shows the dynamical phase diagram~in the a-v plane!,
which presents regions of parameters that correspond to
ferent regimes of motion of the top plate. Stick-slip moti
and smooth sliding occur, respectively, to the left of the so
line vc

(1)(a) and to the right of the dashed linevc
(2)(a). The

system exhibits an intermittent motion in the range of para

FIG. 8. Dependence of the kinetic frictional forceFk on the
dimensionless dissipation constantg. Closed squares are results
numerical calculations and the solid line corresponds calculat
according to Eq.~29!. Fk is presented in units of the static frictiona
force b. a50.5 andv50.02.

FIG. 9. Phase space representation of the plate motion in
underdamped regime forg50.03,a50.05, andv50.02. z and ż
are presented in dimensionless units.
d

l
d

e
e

o

e
n
0

if-

d

-

eters between these two curves. The linesvc
(1)(a) and

vc
(2)(a) describe thea dependences of the critical velocitie

corresponding to transitions between different states of m
tion. They have been found by the analysis of numeri
solutions of Eq.~17!. The following characteristic features o
the phase diagram should be mentioned.

~a! For 0.2,a,1 the critical velocityvc
(1)(a) separating

stick-slip from the intermittent motion depends only slight
on a. Here the stick-slip motion corresponds to jumps b
tween nearest-neighbor cells of the total potentialU ~see Fig.
2!. The analysis of the phase portrait shows that the stick-
state holds as long as the relaxation of the top plate to
local minimum of the potentialU(X,t) after a slip event is
faster than the motion of this minimum. As a result, t
critical velocity vc

(1)(a) increases with the increase ofg. It
should be noted that in this range of parameters we obse
a smooth transition from the stick-slip to intermittent motio
and therefore the boundary linevc

(1)(a) is not well defined
here. Since for 0.2,a,1 the slip distance lies in a nano
metric rangeD' l , it should be hard to distinguish exper
mentally between this type of stick-slip motion and the pe
odically modulated sliding.

~b! With the decrease ofa we observed a steep rise in th
critical velocityvc

(1)(a) that parallels the increase of the sl
distance. The critical velocity as a function ofa has a sharp
maximum for a5amax'0.1. For smaller values ofa, a
,amax, two boundary linesvc

(1)(a) and vc
(2)(a) approach

each other. Numerical calculations show that for all values
parameters the overdamped regimea,g2/4 lies within the
interval a,amax, wherevc

(1)(a) decreases with decrease
a. For a,amax the critical velocityvc

(1)(a) decreases asg
increases. As it has been already mentioned in@20~b!#, for
a,amax the motion bifurcates discontinuously from a pe
odic stick-slip motion to an intermittent one.

The line vc
(2)(a) separating the periodically modulate

sliding from the intermittent motion could be found analy
cally by a linear stability analysis of the solutions of Eq.~18!

s

he

FIG. 10. Dynamical phase diagram for the plate motion. T
solid linevc

(1)(a) indicates the boundary between the stick-slip a
intermittent motions and the dashed linevc

(2)(a) is the lower veloc-
ity boundary of the smooth sliding. Open circles and squares s
the results of numerical calculations ofvc

(1)(a) and vc
(2)(a), re-

spectively. The stage velocityv and the spring constanta are pre-
sented in dimensionless units. The dimensionless dissipation
stantg50.5.
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FIG. 11. Phase portraits and the time series of the spring force for different stage velocities. Stage velocities are denoted on t
The spring force is presented in units of the static frictional forceb. g50.5 anda50.03.F is presented in units of the static frictional forc
b andz and ż are presented in dimensionless units.
d
x-
@18~b!,18~c!#. For this purpose let us rewrite Eq.~18! in the
form

z̈1g ż1az1sin~z!cos~vt2vg/a!

1cos~z!sin~vt2vg/a!50, ~30!
wherez5y2vt1gv/a. Equation~30! describes a dampe
harmonic oscillator that is driven parametrically by the e
ternal forcef 52sin(z)cos(vt)2cos(z)sin(vt). For high driv-
ing velocitiesv@1 the solution of Eqs.~18! and~30! has the
form of the periodically modulated sliding state@32#
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y5vt1gv/a1sin~vt!/v2. ~31!

Besides the sliding state of Eq.~31!, modulated with the
frequencyv we observed also subharmonic oscillations w
frequenciesv/n (n52,3, . . . ) that arise due to parametri
resonances@18~b!,18~c!#. Parametric resonance is an instab
ity phenomenon. In the Appendix we find velocity interva
that correspond to these instabilities. Forg'1 the system
exhibits the first-order (n52) paramentric resonance onl
The critical velocityvc

(2)(a) is defined as the largest drivin
velocity at which the first-order parametric resonance is a
to destabilize the sliding state~31!. This condition yields the
equation~see the Appendix!

vc
~2!~a!52$a2g2/21 1

2 Ag424g2a11%1/2, ~32!

which approximates well the numerical solutionvc
(2)(a) pre-

sented in Fig. 10. When the driving velocity decreases
becomes lower thanvc

(2)(a) the period of the top plate os
cillations is doubled and their amplitude increases shar
For a low dissipation constantg!1 we also observe an in
stability corresponding to thenth-order parametric reso
nances, withn.2. These resonances could exist for velo
ties v.vc

(2)(a) ~see the Appendix!. The period of top plate
oscillations equals 2pn/v in the vicinity of the resonances

As the driving velocity varies fromvc
(1)(a) to vc

(2)(a) the
motion of the top plate bifurcates from the periodic stick-s
motion to modulated sliding. Abovevc

(1)(a) the stick-slip
motion becomes erratic and intermittent. For a wide range
system parameters we find that the motion is chaotic. Fig
11 shows various examples of phase portraits and time s
of the spring force as one passes from the stick-slip mo
to sliding. The amplitude and the period of force oscillatio
decrease drastically as the driving velocity increases.
results presented have been calculated for the case ofa!1
when the slip distance is much larger than the period of
plate potential. The system exhibits a rich spectrum of
haviors within the interval@vc

(1)(a),vc
(2)(a)# even though it

is very narrow for chosen parameters. This makes it c
that the transition from the periodic stick-slip motion
smooth sliding cannot be characterized by a single crit
velocity ~a single boundary line!. The dynamical phase dia
gram should include two boundary linesvc

(1)(a) and
vc

(2)(a) in order to account for the region of the intermitte
motion, which is essential for the understanding of the fr
tional dynamics.

IV. CONCLUSIONS

We have proposed a theoretical description of frictio
phenomena in nanoscale layers of electrolyte solutions. It
been shown that the presence of nonuniform charge distr
tions on the plates gives rise to a space-dependent fricti
force. This force depends strongly on the distance betw
platesd, electrolyte concentrationn, and the lateral length
scale of the surface charge distributionsl. A separation of
time scales for the plate motion and the relaxation of
ionic subsystem allowed us to derive the equation of mot
~17! that includes only one, macroscopic degree of freed
the displacement of the top driven plate. The microsco
le
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properties of the system enter this equation through the f
tional force derived above. The equation leads to a spect
of behaviors in the motion of the plate: periodic stick-sli
erratic, and intermittent motions, characterized by force fl
tuations, and sliding above the critical velocityvc

(2)(a). For
a given driving velocity the dynamical properties of the sy
tem are determined by two dimensionless parametersa
5Kl /2pb, the ratio of the spring force for the stretchingl to
the amplitude of the lateral electrostatic interaction betwe
plates, andg5G/(2pbM/ l )1/2, the dissipation constant
Measurements in a electrolytic environment make it poss
to change these parameters in a controlled way by vary
the electrolyte composition and concentration and the
tance between plates@see Eqs.~15! and~16!#. For conducting
surfaces the surface charge densitiess0 and sd could be
easily changed, which will strongly influence the parame
a. We have shown that the increase ofd and/or n should
result in a decrease of the amplitude of stick-slip oscillatio
and the slip distance and in the transition from the stick-s
to intermittent motion and to smooth sliding. These conc
sions are in agreement with the preliminary results of exp
mental measurements in aqueous solutions@25#. Our calcu-
lations also demonstrated that a variation of the electro
concentration and the distance between plates strongly
fects the dynamical phase diagram@leads to a shift of the
boundary linesvc

(1)(a) andvc
(2)(a)], which could be deter-

mined experimentally@36#.
Although in this work we analyzed the case of the pe

odic charge distribution, similar dynamical phenome
should occur also for a random charge distribution. Ho
ever, contrary to the results discussed above, for a ran
charge distribution the stick-slip motion can be erratic ev
for very low driving velocities. The elucidation of relation
ships between the time patterns of the spring force and
surface charge distribution is in progress. The erratic sti
slip motion may also have its origin in the roughness of
plate surfaces@26,27#. However, we believe that further in
vestigations of the regimes of motion and the dynami
phase diagram as a function of the electrolyte concentra
and the distance between plates will allow one to distingu
between the effect of the electrostatic interactions discus
here and the effect of surface roughness.

Our theoretical consideration shows that experiments p
formed in an electrolytic environment can provide deep
insight into the mechanism of frictional phenomena
nanoscale confined liquids. We hope that the present w
will stimulate further experimental studies of friction und
electrochemical conditions.
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APPENDIX

Here we consider a subharmonic response of the sys
on the external forcef 52sin(z)cos(vt)2cos(z)sin(vt). We
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use the standard theory of the parametric resonance@37#, i.e.,
we look for the solutions of Eq.~30! that have the form

z5z01A sin~vt1c!. ~A1!

Herev5v/n andn52,3, . . . . Thesubstitution of Eq.~A1!
into Eq. ~30! leads to the equations forz0 andA

z0520.5
g

a
vA2

1

n
, ~A2!

~a2v2!21g2v2bn~A!2an~A!50, ~A3!

where

bn~A!5
@Jn21~A!2Jn11~A!#2

@Jn21~A!1Jn11~A!#2
, ~A4!

an~A!5
@Jn21~A!2Jn11~A!#2

A
, ~A5!

and Jn(A) are the Bessel functions of the ordern. When
deriving Eqs.~A2! and ~A3! we have used the Bessel fun
tion expansions@38# of functions sin@sin(x)# and cos@sin(x)#
and conserved constants and terms oscillating with the
quencyv only. It is convenient to rewrite Eq.~A3! in the
form

v25a20.5g2bn~A!

6$0.25g4bn
2~A!2g2abn~A!1an~A!%1/2. ~A6!

The solutions of Eqs.~A2! and ~A3! exist in the interval of
frequencies

vn
~min!,v,vn

~max! , ~A7!
y

-

c
-

e
.

e-

where

vn
~min!5~a2hn

~min!!1/2, vn
~max!5~a1hn

~max!!1/2 ~A8!

and

hn
~max!5max

A
$20.5g2bn~A!1@0.25g4bn

2~A!

2ag2bn~A!1an~A!#1/2%, ~A9!

hn
~min!5max

A
$0.5g2bn~A!1@0.25g4bn

2~A!

2ag2bn~A!1an~A!#1/2%. ~A10!

The valueshn
(max) andhn

(min) should be real and the condition
a1hn

(max).0 anda2hn
(min).0 should be fulfilled. Then the

amplitudeA and the shiftz0 are determined by Eqs.~A2! and
~A3! for a given value ofv lying in the range fromvn

(min) to
vn

(max).
For n52 the maximum and minimum frequenciesv1

(min)

andv1
(max), are reached fora250.25 andb251 and we ob-

tain the expressions for velocities.

v2
~max!52v2

~max!52$a20.25g21~g424ag211!1/2%1/2,
~A11!

v2
~min!52v2

~min!52$a20.25g22~g424ag211!1/2%1/2,

bounding the interval where the solution~A1! exists. The
analysis of Eq.~A6! shows that forg>1 there is only one
interval @v2

(min) ,v2
(max)# where subharmonic behavior is ob

served. Forg!1 the intervals corresponding ton.1 are
also allowed. It should be noted that for all values of t
parametersa andg there is only a finite number of interval
where solutions~A1! could exist. The numerical calculation
confirm the above conclusions.
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