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Frictional forces in an electrolytic environment
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We propose a theoretical description of frictional phenomena in nanoscale layers of electrolyte solutions
embedded between two plates, one of which is externally driven. It is shown that the presence of nonuniform
charge distributions on the plates leads to a space-dependent frictional force, which enters into the equation of
motion for the top driven plate. The equation displays a rich spectrum of dynamical behaviors: periodic
stick-slip, erratic, and intermittent motions, characterized by force fluctuations, and sliding above the critical
velocity. Boundary lines separating different regimes of motion in a dynamical phase diagram are determined.
The dependences of the frictional force and regimes of motion on an electrolyte concentration, a surface charge
distribution, and a thickness of the liquid layer are predicted. The relevance to existing systems and predictions
amenable to different experiments are discuspB#l063-651X%99)01202-1

PACS numbgs): 68.45-v, 68.15+e, 47.27.Lx, 46.80]

I. INTRODUCTION fined between two plates. The dependences of the frictional
force and regimes of motion on the electrolyte concentration,
Much attention has been recently developed within thehe surface charge distribution, and the thickness of the lig-
field of nanotribology in the understanding of the nature ofuid layer are studied. The proposed model leads to the ob-
friction at a microscopic scalfl—4]. Sheared liquids con- served experimental behavior and to predictions that are
fined between two atomically smooth solid surfaces provideémenable to experimental tests. Up to now the majority of
a good example of a system where a broad range of phenorfitirface force apparatéSFA) measurements have been per-
ena and different behaviors have been experimentally oformed with atomically flat mica surfacgs-8| and there-
served[5-8]. These include dry frictionlike behavior ob- fore we do not consider here the effect of roughness on fric-
served for atomically thin liquid layers at low driving tional forces. The presence of surface roughness may lead to
velocity, a transition to a liquidlike sliding with the increase mechanisms of frictioi26,27 that are different from those
of layer thickness and/or driving velocity, and shear thin-discussed above.
ning. These and other observations have motivated theoreti- The paper is organized as follows. In Sec. Il we define the
cal efforts, both numerical9—15 and analytical[16—21], model and calculate frictional forces between two plates. The
but many aspects of friction are still not well understood. Poisson-Boltzmann approach is used for the calculation of
To get insights that will help establish the basics of nan-electrostatic interactions. In Sec. Il we introduce the equa-
0trib0|ogy it is necessary to perform measurements undeﬁion of motion. Different dynamical regimes are discussed
well defined conditions and to have a possibility to changeand transition between them are analyzed. Section IV sum-
interactions in a controlled way. An electrochemical environ-marizes our results. The Appendix presents a stability analy-
ment can provide such conditions for nanotribological stud-sis of the regimes of motion.
ies. Electrode surfaces immersed in electrolyte have well de-
fined properties. Dissolution of surface groups leads to
charging of these surfaces, resulting in electrostatic interac-
tions between surfaces. All electrostatic interactions are We consider two plates separated by a thin layer of an
known and well describe22]. There are many ways to electrolyte solution. The top plate of maskis pulled by a
change interactions in electrochemical systems withoulinear spring with a force constamt connected to a stage
changing any other properties of the measurement, for inthat moves with a velocity (see Fig. 1L When the plate
stance, by varying the electrolyte concentration and compaosurfaces are in contact with an electrolyte they become
sition. Moreover, for conducting surfaces the surface poteneharged. This leads to electrostatic interactions between
tial can be changed during measurements, which allows onglates. The charging of surfaces in a liquid can come in two
to distinguish between different contributions to frictional ways[22]: by the ionization or dissociation of surface groups
forces. Friction measurements performed in an electrolytic

Il. ELECTROSTATIC INTERACTIONS

environmenf23—-29 have already demonstrated interesting K
dependences of frictional dynamics on the electrolyte con- I—/\/\/\r—-—~ v
centration and on liquid film thickness.
In this paper we propose a theoretical description of fric- ‘+ tooem -+t - - ‘
tional phenomena in a thin layer of electrolyte solution con- Plates™” electrolyte
‘----++--++‘
* Author to whom correspondence should be addressed. Electronic
address: urbakh@post.tau.ac.il FIG. 1. Schematic sketch of a model geometry.

1063-651X/99/562)/1921(11)/$15.00 PRE 59 1921 ©1999 The American Physical Society



1922 L. I. DAIKHIN AND M. URBAKH PRE 59

or/and by the adsorption of ions from the solution. Theequation22,29. As a first step we restrict our consideration
charge on the solid surfaces is obviously not uniformly dis-by its linearized version, valid for low potentialgh
tributed over the surfaces. The discreteness of the surfacekgT/e:
charges is a natural source of this nonuniformity. The surface
roughness may serve as an additional source of the charge (V2= k%) ¢(r)=0. (4)
nonuniformity. It should be noted that the surface charge
distribution depends on the conductivity of the plates.

The motion of the nonuniformly charged top plate gives

The solution of Eq(4) must satisfy the boundary condi-
tions relating the normal component of electrostatic displace-
fise to a reorganization of the ionic distribution in the elec-MeNt to the surface charge densities at the plates. We de-
trolyte solution, which results in a resistance force acting orpc'iP€ the surface charge densities at the bottom and the top
the top plate. The relaxation time of the ionic syste Plates by the functions(R) and o4(R+X), respectively.
could be estimated as; = x2D [28], wherex ! is the De- The planez=0 andd are chosen to coincide with the plate
bye length andD is the diffusion coefficient of the ions in the ?#rfices gn@:(xayt). denotesba tangg:anﬂal coordinate. Then
solution. For a 1-1 binary electrolyte solutiok ! € boundary conditions can be writien as

=(e.kgT/8mne?)Y2, wheren is the electrolyte concentra- 9b(z=0+ R) 9d(z=0— R)

tion, €, the dielectric constant of the solveetthe charge of €l —— — €gus — =470o(R),

electron, T the temperature, arkk the Boltzmann constant. 9z 9z ©

In 0.1IM-0.00M aqueous SO|Uti0nS7'51 is typically _ o

10’'—10 s . The characteristic time related to the motion of GSUb&ﬁ(Z §d+ R) _ Eela¢(z &d R) = 4mag(R+X),
z z

the nonuniform surface charge could be estimatedras
=Vnmad/l, Wherel is the average distance between charges o
the plate surfaces and,,,is the maximal velocity of the top
plate. The charges on real surfaces are typically 1-10 n
apart from each other on averaf2?] arjd V max does not  .n electrolyte solutioh22,29.

exceed 18 (see below; where the velocity of the stageis Here we focus on the effect of lateral nonuniformity of

. 2 _1 .
tyoglcalg 1_?_ —1um/s. As aresultr,” falls in the range  the gyrface charge density, which plays an essential role in
10°-10°s " Our estimations demonstrate that the relaxationyciional phenomena. We assume that surface charge distri-
of the ionic atmosphe_re is much fas';er than th_e motion _OButionScro(R) ando4(R+X) are frozen and do not depend
surface charges. In this case the ionic system is in equilibat the relative displacement of the plates. The influence of

rium at all times and the lateral, frictional, force acting on they,ctuations of surface charges on the interactions between
top platell is determined by the variation of the free eNnergy pjates has been considered in R&0).

thereesub is the dielectric constant of the plates. A similar
model, with uniform surface charge densities, has been used
study a normal pressure between two charged surfaces in

of the ionic systeniF, In solving Eq.(4) it is convenient to Fourier transform the
potential and the charge densities from the tangential coor-
M=— f (1) dinatesR to the corresponding wave vectdfs= (K, ,K,) so
X’ that f(K) = [dR f(R)exp(-iK - R). Equation(1) then trans-
forms to

where X is the lateral displacement of the top plate with

respect to the bottom one and the axis chosen to coincide d?

with the direction of motion. [F_ K2— Kz] $(K,2)=0. (6)
If the ions in the solution are treated as a dilute, ideal gas, z

the free energy of the electrolyte plasma can be written ag

[29] he solution of Eq(6) in the layer 6<z<d has the form

#(z,K)=A(K)exp(—qxz) +B(K)exp(axz),  (7)

where g = Vk?+KZ2. The boundary conditions in Ed5)
lead to the equations for the prefact@yéK) andB(K),

]fszj d*r{n (N[Inn,(r)/n—1]
+n_(r)[Inn_(r)/n—1]+2n}
€el A(K)—Z—W{ (K)( + yexp(ggd)
+gfd3rV¢<r>V¢(r>. ) = bk 170K (et €suf<)expdx

+oy(K - exp(iK, X)},
Here ¢(r) is the electrostatic potential in the electrolyte and al K)ol ~ €su) EXRKX)} e

n.(r) and n_(r) are the concentrations of positive and 2
negative ions, which are related to the potential by the equa- B(K)= W{UO(K)(69|QK— €su)exp(—ggd)
tions
N (r)=nexd ¥ ed(r)/ksT]. 3) +Ud(K)(€quK+esuﬂ()qulex)}!
where
In order to calculate the forcH, one needs the distribu-
tion of the electrostatic potentiakr) in the electrolyte. The D (K)=(e2qa+ 2, K?)sinh(qxd) + 2 eqiesuflK coshgyd).
latter is described by the solution of the Poisson-Boltzmann 9
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Then the distribution of the electrostatic potential in the so-ionsl. The amplitude of the frictional force decreases expo-

lution has the form nentially with the distance between plates. In the range of
high electrolyte concentrations=2/l, we predict a sharp
d’K 4mexpiK-R) decrease irb as n increases. For lower concentratiors
d’(R'Z):f (2m)2 D(K) <2m/1, the amplitudeb depends only slightly om.
Equation (12) applies also to a case of random charge
X{ao(K)[ €eQk coshqx(z—d) distributions on the plates. It has been recently shp®dj
. _ that the presence of random charge distributions leads to a
~ €suK sinhqy(z—d) ]+ a4(K) expliK,X) large number of minima in the energy of interaction between
X [ €k COShayz-+ s Sinhgkz]}. (10) plates as a function of their relative parallel displacement.

The typical energy associated with these minima scales as
In the range of low potentials one may expand ion conihe square root of the plate ar84? and for sufficiently large
centrationsn. (r) in e¢/kgT. Then considering terms up to Pplates can be much larger than the thermal ené&gdy The

the second order ir¢/kgT, Eq. (2) for the free energy Presence of such minima may lead to stick-slip phenomena
reduces to for low driving velocities. Most dynamical behaviors found

in the next sectior(stick-slip motion, transition to sliding,

]__:%j 4R ¢(R)UO(R)+%J R $(R)og(R+X) and so on hold also for a random charge distribution.
z=0 z=d

Ill. DYNAMICS OF FRICTION

d’K
=277f (2m)? D(K){[|UO(K)|2+|Ud(K)|2] The motion of the top driven plate, which is the basic
observable in SFA experiments, is determined by the inter-
X[ €eldk coshgxd+ e (K sinhgxd] play between the electrostatic lateral force, a viscous friction,
) and the external spring force. Taking into consideration the
+204(K)op( —K) €e eXpiK,X)}- (1) separation of time scales, which correspond to the top plate

motion and to the ionic subsystem relaxation, the dynamical

Substitution of Eq(11) into Eq. (1) gives the final equation equation for the plate can be written in the form

for the lateral force acting on the moving top plate

-4 if d°K  €q0rKyag(K) oo — K)exp(iKX) MX+TX+K(X—Vt)—bsin2xX/l)=0. (17
= 7T .

(2m)? D(K)

12 The dissipative forcd’X in Eq. (17) describes the viscous

Equation(12) correlates the lateral force with the charge friction at the top plate-solution interfade= 7.4Sd, where
distributions on the plates. As an example, we assume perfleft IS the effective viscosity in the confined liquid layer. The

odically varying charge density distributions along the plate€fféctive viscosity of the thin layer may differ essentially
surfaces from the bulk viscosity of the solutiof6].

The important outcome of our electrostatic consideration

is that the effective frictional force Fyp=—TX
+b sin(2#X/1) in the equation of motion for the macroscopic
mechanical degrees of freeddrq. (17)] has to be space
This leads to the expression for the space-dependent laterdépendent as obtained in E§4). The space dependence of
force the friction force reflects properties of the microscopic inter-
actions at the surfaces, namely, the nonuniformity of the sur-
face charge distribution at the plate surfaces taken here as
periodic. The typical lateral length scale of the electrostatic
interactionl reappears in the macroscopic friction force. The
where independence of the lateral fortEof the velocity is a con-
sequence of the fact that the relaxation time of the embedded
475 (Ao)?Seqk*+ (27/1)? systemry, is faster than the characteristic time related to the
b= ID(K=2m/l) 19 motion of the top platery,,. Similar equations with space-
dependent frictional forces emerge also in other systems, for
andSis the area of the plate surfaces. Equati®) can be instance, in the case of dry frictid20(b),32].

o 2w
U'O(R):O'd(R)=0'+AO'Sin|—X. (13

2
H=bsin<|—x), (14

simplified by taking into consideration thag> e, It is convenient to introduce dimensionless space and
time coordinates y=2#X/l and 7=tw, where w
47°S(Ao)? =(27/1)Y%b/M is the frequency of the small oscillations

b= . (18  of the top plate in the minima of the periodic potential
[32 2 i [2 2
€el Vi (27l1)" sinfldV i+ (2/1)7] (I/27) b cos(27/1X). Equation(17) can be rewritten then in a

Equations(14)—(16) present the dependence of the frictional dimensionless form as
force on the distance between platishe electrolyte con-
centrationn, and periodicity of the surface charge distribu- y+ yy—sinly)+a(y—v7)=0. (18
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FIG. 2. Dimensionless total potentialn2J) (X,t)/bl versus the
dimensionless plate coordinaterX/l drawn for «=0.03 andv 1ol (b)
=40. Arrows indicate a slip motiofa jump of the plate for three
different dynamical regimea—c discussed in the text. ook
The dynamical behavior of the model is determined by 08}
the following dimensionless parametens=I'/Mw is a di- F/b
mensionless dissipation constant= (Q/w)? is the square 0.7
of the ratio of the frequency of the free oscillations of the top
plate )= JK/M to », andv=27V/wl is the dimensionless 06F
stage velocity. The model leads to a number of different
regimes of the motion of the top driven plate, which is the osr L . .
experimental observable. Below we discuss the dependenc 2000 3000 4000 5000 6000 7000
of the plate motion on the parameters of the system. o
A. Low-velocity regime ©
The main objective of the SFA experiments is to deduce 1or
information on microscopic properties of the system from
the observed dynamics of the top plate. For this purpose oni 05k
needs to understand the dependence of the dynamics on tt
mechanicallexterna) parameters and the parameters of the 00
embedded systelrtinterna). First we investigate the motion T
of the plate for very small velocities of the stag& 1. In this
case, the motion can involve two steps: slow mofioreep 0.5}
in a local minima of the total potenti&)(X,t) (see Fig. 2
U(X.t) = L COS(Z—WX N E(X—Vt)z (19 3500 3000 3500 4000 4500 5000
27 | 2 tw

and a fast slip(sliding) that begins when an instability oc- FIG. 3. Time series of the spring for&efor three regimes of the
curs, i.e.,d?U/dX? changes sign. The latter is possible for plate motion: (8 y=5,a4=0.02, andv=0.02; (b) y=0.5,«
a<1 only. At the point of instability the spring force reaches =0.02, andv=0.02; and(c) y=0.03,a=0.05, andv=0.02. The
a maximum value corresponding to the static friction forcespring force is presented in units of static frictional fotce

Fs. The static friction equals the maximum value of the
lateral force acting on the top plate, the amplitudlen Eq.
(14),

the motion of the stage being in a minima of the total poten-
tial. Here we concentrate on the dynamics of the system in
the most interesting case af<1, when the electrostatic in-
teraction between plates is stronger than the external spring
force.

During a sliding the spring forc& =K(X—Vt) decreases The dynamics of the stick-slip motion could be analyzed
until it reaches a valu€&, where the sliding ceases and the taking into account that the stage is effectively at rest during
top plate is trapped again at a potential minima. Thus a pethe fast slip of the plat®/t=Ly=const. The time pattern of

F=bh. (20)

riodic stick-slip motion of the top plate is observed for
<1 anda<1 [see Figs. @-3(c)]. This type of motion has

the stick-slip motion is determined by the relationship be-
tween parametersr and y. Three regimes can be distin-

been recently observed in the experiments performed in eleguished [20(b)]: (a) y?/4>1, where the system is over-

trolyte solutions [25]. For «>1 no instabilities occur,
d?U/dX?+0, and at all times the plate follows adiabatically

damped[Fig. 3a)]; (b) a<y?/4<1, where the system is
underdamped with respect to the periodic potential and over-
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FIG. 4. Phase space representation of the plate motion in the £ 5 pimensionless frictional forcg; /b versus the dimen-

overdamped regime foy=4,«=0.2, andv=0.02.zand z are  gjgpjess velocity of the platg. The parameters are the same as in
presented in dimensionless units. Fig. 4.

damped with respect to the driving sprifgig. 3(b)]; and(c)

Y?lA< a<1, where the system is underdamgé&ity. 3(c)]. v=0.02. The intervala,b] corresponds to a very slow mo-
(@) ¥%/4>1. In this regime the “slip” motion of the top tion (creep of the top plate located in the minima of the
plate corresponds to the jump between nearest-neighb@iotentialU(X,t). The top plate starts to slide at the saddle
minima of the potentiall (X,t=L,/V) and the slip distance pointb where the instability occurs, approaches the maximal

A is aboutl, the period of the lateral forcH. velocity at the point, and comes to rest at
The energy dissipated during the slip is We have also calculated an instantaneous frictional force
AW=U(Xg,Lo) —U(Xy,Lo). 21)  Fy=—TX+bsin(2nX/) as a function of plate velocitjsee

Fig. 5. This quantity could be derived from the SFA experi-
HereX, andL are the position of the plate and the length of mental datd 33,34 providing additional information on the
the spring at the saddle point given WJ/dX=0 and frictional dynamics. During the creep perioBy increases
d?U/dX?=0, where the slip starts, an¢} is the next larger |inearly in time froma to b. When Fy, reaches the static
value ofX that satisfieslU/dX=0. The coordinateX, and friction the top plate starts to slide. During the acceleration
Lo are shown to be (bo) Fy decreases monotonically frofg as the velocity
1 increases. During the decelerati@a) F;, continues to de-
Xo=I| 1— =—arccosa) |, (22) crease. Our calculations show that the frictional force is not a
2m single-valued function of the velocity. A similar effect has
been observed in a recent measurement of friction in granu-
Lo=Xo+ '_(1_a2/2)_ (23) lar materials[33]. Thg difference between Figs. 4and 5 is
2ma caused by the contribution of the acceleration of the plate

. . L .. and becomes more pronounced for 1. A detailed analysis
For low driving velocities the average friction force, whichis ¢ 4 tansition from stick-slip motion to sliding within the

defined as the dissipated energy per unit Iength_, (I?e overdamped regime has been performed in efb), 32].
=AW/A, can be calculated analytically for two limiting (b) a<+?/4<1. In this regime the system manifests a
caseq32] qualitatively different dynamical behavior. Figure 6 presents
— _ )2 _ 3 o phase portraits calculated for different values of the dimen-
©=9b(1-a)¥m+O(1=a)?) for O<l-a<l, (24 sionless spring constaat The following important features
d=b+0(a) for a<l. (25) of the top plate motion should be notdd. The slip distance
increases with the decrease @fand could be much larger
The finite value of the frictional force found here for-0 is  than the period. The number of maxima af as a function
a result of instabilities of the potenti&l (X,t). Similar ef-  of z seen from the phase portrait, corresponds to a number of
fects have been also found in other microscopic models operiods covered by the plate during the slip) After slid-
friction [12,20,33 and in large-scale molecular dynamics ing, the plate oscillates while approaching the stable equilib-
simulations|14]. rium position that corresponds to the focus. The equilibrium
Important information on the nature of stick-slip motion Position itself moves in the direction of the next jump and
and on a transition to sliding could be obtained from a phas¢he nature of the singular points{U/9X?=0) changes,
portrait z=y—v 7+ yv/a vs z=y—v), which characterizes transforming from the focus into the node and then into the
the oscillatory motion of the system. The phase space repr&addle point.
sentation is closely related to the dependence of the spring In order to understand the dependence of the slip distance
force a(v 7—y) on the top plate velocity, which has been On « andy we have derived an approximate analytical ex-
studied experimentall}33]. Figure 4 shows a representative pression for the top plate veloci¥ using the energy balance
phase portrait of the overdamped regime=0.2,y=4, and  equation
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FIG. 7. Slip distanc& versus the dimensionless spring constant
25} b (b) a. Closed circles show the results of numerical calculations and the
solid line corresponds to calculations according to &7). A is
presented in units of the period of surface charge distribdtidhe
dimensionless dissipation constant 0.5 andv =0.02.

20}
4
c regime. We find that foee<<1, AW is proportional to the slip

distance. As a result, the average friction force, which was
15k a defined as the dissipated energy per unit length, should be
estimated with the help of Eq§24) and (25) derived above
for A=~I.
. . . . Low driving velocity measurements help to distinguish
- 0 .o 2 between two fundamental quantities: statit) and kinetic
(F,) friction forces.F4 is the force needed to initiate the
FIG. 6. Phase space representation of the plate motiomfor motion andF, is the minimal force necessary to keep the
<9?/4<1: (@ y=0.5,2=0.02, andv=0.02 and(b) y=0.5,«  plate sliding. As we have already mentioned abdvg,is
=0.04, andv =0.02.z andz are presented in dimensionless units. expressed by the amplitude of the periodic lateral foEe.
(20)]. When considering the kinetic friction, the dissipative
MX2 | 2 K nature of the system enters aR¢ depends also oii. For
> o4 b COS(l—X) + 5 (X= Lo)? a< y?/4<1 the kinetic friction can be obtained by balancing
the gain in energy due to driving force and the energy loss

X . due to dissipatio35]. This argument leads to
Xo
. . : 4
Equation(26) has been solved using the expression for the Fk:} yb. (29

dissipated energy, which was found by the solution of Eqg.
(17) in the zeroth order irb. This approximate solution of
Eqg. (26) is in good agreement with the results of numericalin the regimes(a) and (b) discussed so far, the static and

calculations ofX(X) according Eq(17). The slip distance  kinetic friction forces correspond to the maxima and minima
could be determined as a distance between the psint in the spring force observed during stick-slip oscillations
= X,, where the slip starts, and the next turning point, wherdsee Figs. &) and 3b)] [5]. Figure 8 demonstrates that re-
X=0. As a result, fore<1 we obtain sults of numerical calculations &, follow Eq. (29).
Our calculations show that time patterns of the stick-slip
a(y) motion depend ofi) the parameters of the embedded system
1- ‘/_7( 1- —) } (27)  (thickness of the liquid layed, concentration of the electro-
Y lyte solutionn, and lateral length scalp and (ii) the me-
where chanical parametefsnass of the top plat®! and spring con-
stant K). All these parameters are included in the
dimensionless quantitias and vy. In the case of the electro-
[4—exp(— \/_7 lyte solution confined between two plates the parameter
(2g)  increases exponentially with the distandeoetween plates
and/or electrolyte concentratian[see Eqs(15) and (16)].
Equation(27) shows that the slip distance increases proporThus the increase odl and/orn, for given K, M, andV,
tionally to b/KI. Figure 7 shows the dependencestodn «  should lead to a decrease in the sliding distance and to a
for y=0.5. transition from stick-slip motion to smooth sliding. These
The energy dissipated during the s\ can be evalu- conclusions are in agreement with the preliminary experi-
ated in a similar manner as was done in the overdampethental result$25].

A~2

g(y)= \/___ M



PRE 59 FRICTIONAL FORCES IN AN ELECTROLYTIC ENVIRONMENT 1927

osF 1.0
[o] o
/
o8} 08} /
n /
s
0.7} 0.6} intermittent // sliding
F. /b . o )
/
osf oal y
. d
0.5} 7
0.2 a
//
o4t "™ stick-slip -
1 1 A A 1 A 'l 1 1 00 X X \ '
040 045 050 055 060 065 070 o4 0.5 T2 o 20
Y v
FIG. 8. Dependence of the kinetic frictional forég on the FIG. 10. Dynamical phase diagram for the plate motion. The

dimensionless dissipation constaptClosed squares are results of solid linev{"(«) indicates the boundary between the stick-slip and
numerical calculations and the solid line corresponds calculation#itermittent motions and the dashed i€’ () is the lower veloc-
according to Eq(29). F, is presented in units of the static frictional ity boundary of the smooth sliding. Open circles and squares show
forceb. «=0.5 andv=0.02. the results of numerical calculations of”(a) and v?(a), re-
spectively. The stage velocity and the spring constant are pre-
(c) Y’l4<a<1. In this regime the periodic motion of the sented in dimensionless units. The dimensionless dissipation con-
system includes a stick period followed by slowly attenuatedstanty=0.5.
oscillations [20(b)]. The top plate starts to slip from the
saddle point, overshoots the lowest well of the total potentiafters between these two curves. The liné$(a) and
U(X,Ly), and bounces a few times across the modulated(cz)(a) describe thex dependences of the critical velocities
parabola(see Fig. 2 before it slowly comes to rest into one corresponding to transitions between different states of mo-
of the pinning wells. This behavior is illustrated by the phasetion. They have been found by the analysis of numerical
portrait presented in Fig. 9. It should be mentioned that thesolutions of Eq(17). The following characteristic features of
minimal spring force observed during stick-slip oscillationsthe phase diagram should be mentioned.
is negative and the amplitude of the oscillations is closed to (a) For 0.2<a<1 the critical velocityv(")(«) separating
2Fs. stick-slip from the intermittent motion depends only slightly
on a. Here the stick-slip motion corresponds to jumps be-
B. Transition from stick-slip motion to sliding tween nearest-neighbor cells of the total potentidkee Fig.
2). The analysis of the phase portrait shows that the stick-slip

As the stage velocity increases the stick-slip motion of th::ftate holds as long as the relaxation of the top plate to the

top plate becomes more erratic and intermittent and the hcal minimum of the potentiall (X.t) after a slip event is
changes to periodically modulated sliding state. Figure 1 ° P ; D P
aster than the motion of this minimum. As a result, the

shows the dynamical phase diagrain the a-v plane, - L) ) . :
which presents regions of parameters that correspond to dif/itical velocity v () increases with the increase of It
ferent regimes of motion of the top plate. Stick-slip motion should be noted that in this range of parameters we observed

and smooth sliding occur, respectively, to the left of the solid® smooth transition from the sticl1<-slip to intermittent motion
line v)(a) and to the right of the dashed liné?)(a). The @nd therefore the boundary lind?(«a) is not well defined
° here. Since for 0.2 a<1 the slip distance lies in a nano-

system exhibits an intermittent motion in the range of param- : - = : g

metric rangeA =, it should be hard to distinguish experi-
mentally between this type of stick-slip motion and the peri-
odically modulated sliding.

(b) With the decrease at we observed a steep rise in the
critical velocityvgl)(a) that parallels the increase of the slip
distance. The critical velocity as a function @fhas a sharp
maximum for @ = a,,,=0.1. For smaller values of, «
< &max, WO boundary lines(Y(«) andv(?(a) approach
each other. Numerical calculations show that for all values of
parameters the overdamped regime y?/4 lies within the
interval < amay, Wherev V(@) decreases with decrease of
a. For a< an,y the critical velocityv(P)(«) decreases ag
4 2 0 > ' 4 increases. As it has been already mentionefiXb)], for
a<ana the motion bifurcates discontinuously from a peri-
odic stick-slip motion to an intermittent one.

FIG. 9. Phase space representation of the plate motion in the The line v?)(a) separating the periodically modulated
underdamped regime fop=0.03,&=0.05, andv=0.02.z and z sliding from the intermittent motion could be found analyti-
are presented in dimensionless units. cally by a linear stability analysis of the solutions of E48)
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FIG. 11. Phase portraits and the time series of the spring force for different stage velocities. Stage velocities are denoted on the graphs.
The spring force is presented in units of the static frictional fdxcg= 0.5 anda=0.03.F is presented in units of the static frictional force
b andz andz are presented in dimensionless units.

[18(b),18(c)]. For this purpose let us rewrite E@L8) in the

form

2+ yz+ az+sin(z)cogv v yl a)

+coqz)sinvr—vy/a)=0,

wherez=y—uv 7+ yv/a. Equation(30) describes a damped
harmonic oscillator that is driven parametrically by the ex-
ternal forcef = — sin(@)cos@ 7)—cos@)sin( 7). For high driv-
ing velocitiesv>1 the solution of Eqs(18) and(30) has the
form of the periodically modulated sliding stdt&2]
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y=v 7+ yvla+sinv7)/v. (3D properties of the system enter this equation through the fric-
tional force derived above. The equation leads to a spectrum

Besides the sliding state of E¢31), modulated with the of behaviors in the motion of the plate: periodic stick-slip,
frequencyv we observed also subharmonic oscillations with€rratic, and intermittent motions, characterized by force fluc-
frequenciesv/n (n=2,3, . ..) that arise due to parametric tuations, and sliding above the critical velocit{?(a). For
resonancefl8(b),18(c)]. Parametric resonance is an instabil- a given driving velocity the dynamical properties of the sys-
ity phenomenon. In the Appendix we find velocity intervals tem are determined by two dimensionless parameters:
that correspond to these instabilities. Fp=1 the system =KI/27b, the ratio of the spring force for the stretchintp
exhibits the first-order {=2) paramentric resonance only. the amplitude of the lateral electrostatic interaction between
The critical velocityv ?(«) is defined as the largest driving plates, andy=I/(2mbM/1)*? the dissipation constant.
velocity at which the first-order parametric resonance is abldleasurements in a electrolytic environment make it possible

to destabilize the sliding stat81). This condition yields the to change these parameters in a controlled way by varying
equation(see the Appendix the electrolyte composition and concentration and the dis-

tance between plat¢see Eqs(15) and(16)]. For conducting
v@(a)=2{a— Y2+ 3y "—4y2a+1}'? (32 surfaces the surface charge densitigsand o4 could be
easily changed, which will strongly influence the parameter
a. We have shown that the increase dfand/orn should
aesult in a decrease of the amplitude of stick-slip oscillations

sented in Fig. 10. When the driving velocity decreases an s . o . .
becomes lower than®(a) the period of the top plate os- and the slip distance and in the transition from the stick-slip
€ to intermittent motion and to smooth sliding. These conclu-

cillations is .dO.UbI?d and their amplitude increases Sh".irplysions are in agreement with the preliminary results of experi-
For a low dissipation constant<1 we also observe an in-

tabilit ding to theth-ord i mental measurements in aqueous soluti@f. Our calcu-
stabilitycorrésponding to theth-order parametric réso- - \iinng 5150 demonstrated that a variation of the electrolyte

hances, "ZV'”“>2' These resonances COU'P' exist for Veloc"concentration and the distance between plates strongly af-
tiesv >_U(c (a) (see the Appendix The period of top plate  fects the dynamical phase diagrdteads to a shift of the
oscillations gquals &n/.v in the vicinity of the resonances. boundary "nea)(l)(a) andv(z)(a)], which could be deter-

As the driving velocity varies from(P(a) tov?(e) the  1ined experimecntally36] ¢
motion of the top plate bifurcates from the periodic stick-slip Although in this Work.we analyzed the case of the peri-
motion to modulated sliding. Above(")() the stick-slip  odic charge distribution, similar dynamical phenomena
motion becomes erratic and intermittent. For a wide range oéhould occur also for a random charge distribution. How-
system parameters we find that the motion is chaotic. Figurgver, contrary to the results discussed above, for a random
11 shows various examples of phase portraits and time serigharge distribution the stick-slip motion can be erratic even
of the spring force as one passes from the stick-slip motiofior very low driving velocities. The elucidation of relation-
to sliding. The amplitude and the period of force oscillationsships between the time patterns of the spring force and the
decrease drastically as the driving velocity increases. Theurface charge distribution is in progress. The erratic stick-
results presented have been calculated for the case<df  slip motion may also have its origin in the roughness of the
when the slip distance is much larger than the period of thg)jate surface$26,27. However, we believe that further in-
plate potential. The system exhibits a rich spectrum of bevestigations of the regimes of motion and the dynamical
haviors within the intervalvY(a),0?)(a)] even though it phase diagram as a function of the electrolyte concentration
is very narrow for chosen parameters. This makes it cleaand the distance between plates will allow one to distinguish
that the transition from the periodic stick-slip motion to between the effect of the electrostatic interactions discussed
smooth sliding cannot be characterized by a single criticahere and the effect of surface roughness.
velocity (a single boundary line The dynamical phase dia- Our theoretical consideration shows that experiments per-
gram should include two boundary Iinesgl)(a) and formed in an electrolytic environment can provide deeper
v®(a) in order to account for the region of the intermittent insight into the mechanism of frictional phenomena in
motion, which is essential for the understanding of the fric-nanoscale confined liquids. We hope that the present work
tional dynamics. will stimulate further experimental studies of friction under

electrochemical conditions.

which approximates well the numerical solutioff’(«) pre-
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use the standard theory of the parametric resong8Wei.e.,  where
we look for the solutions of E(30) that have the form - -
C( ) wgmm):(a_ hgmln))lIZ’ wgmax):(a,_’_ hE-]maX))l/Z (A8)

z=z5tAsiNw7t+ ). (A1) and
Herew=v/n andn=2,3, ... . Thesubstitution of Eq(Al) h(max _ —0.5v2b.(A)+[0.25v*b2( A
into Eq. (30) leads to the equations fap andA " mAax{ 57 bn(A)+0-257Dr(A)
1 —ay?by(A)+ay(A)]Y A
ZO:_O.SgwAZH, (AZ) ay bn( ) an( )] 2}1 ( 9)
h{™"=max 0.5y?b,(A) +[0.25y*b3(A)
(a—w?)?+ y*w’by(A) —ay(A)=0, (A3) A

where —ay?by(A)+an(A)]Y3. (A10)

(max) (min) e
(3o 1(A) = 1(A)]? The valuedh,"" andhy™" should be real and the conditions

b(A) = , (A4)  a+h{"™9>0 anda—h{"">0 should be fulfilled. Then the
[Jn-1(A)+In41(A)]? amplitudeA and the shifiz, are determined by EqéA2) and
) (A3) for a given value of lying in the range fromu{™" to
a (A)= [In-12(A)=Jn+1(A)] (A5) M),
" A ’ Forn=2 the maximum and minimum frequencie§™"

and w{™®, are reached foa,=0.25 andb,=1 and we ob-

and J,(A) are the Bessel functions of the order When tain the expressions for velocities.

deriving Egs.(A2) and (A3) we have used the Bessel func-

tion expansion$38] of functions sifisin(x)] and cogsin(x)] DI =2 =21y —0.25)°+ (y*— day?+ 1) Y312
and conserved constants and terms oscillating with the fre- (A11)
guencyw only. It is convenient to rewrite EqA3) in the

form 05" = 205" =2{a =025~ ('~ 4ay’+ 1)

2 2 bounding the interval where the solutidAl) exists. The

"= a=0.5y"n(A) analysis of Eq(A6) shows that fory=1 there is only one
+{0.25y*b2(A) — y2ab,(A)+a,(A)} Y2 (A6)  interval [v§™ i) where subharmonic behavior is ob-

served. Fory<1 the intervals corresponding to>1 are

The solutions of Eqs(A2) and (A3) exist in the interval of also allowed. It should be noted that for all values of the
frequencies parametersy andy there is only a finite number of intervals
(i) (mex where solutiongAl) could exist. The numerical calculations
o <o<op ", (A7) confirm the above conclusions.
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